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1 Introduction

This document includes a description of the code FALCON (Fem ALgorithm for COmputational aNalisys), with a

presentation of the features implemented followed by results of extensive benchmarks listed in Table 1, performed to

verify that the code solves correctly a wide range of problems. Description and results of all benchmarks are shown

in Section 12.

Feature Benchmark Section

Solver Stokes flow 12.2

Markers advection
Zalesak disk 12.3

Conservative Velocity Interpolation 12.4

Momentum equation

Poiseuille flow 12.5

Instantaneous 2D sphere 12.6

Rayleigh-Taylor experiment 12.7

Falling block 12.8

2D Stokes sphere 12.9

Sticky air and Stabilisation algorithm 12.10

free surface Topography relaxation 12.11

Spontaneous subduction 12.12

Erosion and sedimentation - -

Non-linear rheology

Slab detachment 12.13

Indenter 12.14

Brick 12.15

Energy equation

Advection stabilisation 12.16

Simple shear heating 12.17

Shear and adiabatic heating 12.18

Energy + momentum

Mantle convection 12.19

Viscoplastic mantle convection 12.20

Thin layer entrainment 12.21

Phase changes
Hydrated sinking cylinder 12.22

and hydration

Melting Experimental melting curves 12.23

Table 1: List of benchmarks performed for each feature of the code. Data of all benchmarks can be found at

https://github.com/aleregorda/Benchmarks

∗alessandro.regorda@protonmail.ch
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3 LAGRANGIAN MARKERS

2 Governing equations

The code is written in Fortran90 and uses the finite element method (FEM) with quadrilateral Q1 × P0 elements

(continuous bilinear velocity and discontinuous constant pressure), associated with MUMPS1 (Amestoy et al., 2001,

2019) that is a software package for solving systems of linear equations of the form A · x = b, where A is a square

sparse matrix, by means of a direct method. Since Q1 × P0 elements do not satisfy Ladyzhenskaya, Babuska and

Brezzi (LBB) stability condition (Donea and Huerta, 2003), elemental pressure is elaborated in post-processing to

avoid spurious pressures by means of a double interpolation to smooth the pressure. Following this procedure, the

elemental pressure is interpolated onto nodes and then back onto elements. After the smoothing procedure, the

pressure field is calculated again on the nodes to be used in combination with the lithostatic pressure, which is

calculated onto nodes. Correctness of the solution and performances of the solver in terms of time and memory

usage are tested solving the Stokes flow with the analytical solution proposed by Donea and Huerta (2003) (Section

12.2).

The thermo-mechanics of crust-mantle systems is described by means of the conservation of mass, momentum and

energy equations, expressed as follows:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

−∇p +∇ · τ + ρg = 0 (2)

ρCp

(
∂T

∂t
+ u ·∇T

)
= ∇ · (k∇T ) + Htot (3)

where ρ is the density, u is the velocity, p is the pressure, τ is the deviatoric stress, g is the gravity acceleration, Cp

is the specific heat at constant pressure, T is the temperature, k is the thermal conductivity and Htot is the total

internal heat production. Density variations due to temperature are generally small enough to assume the density as

constant (ρ = ρ0) in Eq. 1 and in Eq. 3, while it must be treated as a variable in the buoyancy term of Eq. 2, such

that

ρ = ρ0(1− α(T − T0)) (4)

where ρ0 is the density at a reference temperature T0 and α is the coefficient of thermal expansion. Eq. 1 then can

be rewritten as

∇ · u = 0 (5)

This simplification is known as the Boussinesq approximation.

The time step dt is chosen in according to Courant-Friedrichs-Lewy condition (Anderson, 1995), such that

dt = Cn min

(
∆x

max |u|
,
(∆x)2

κ

)
(6)

where 0 < Cn < 1 is the Courant (CFL) number, ∆x is the minimum dimension of smallest element, max |u| is the
maximum velocity calculated on the entire domain and κ = k

ρCp
is the thermal diffusivity (Thieulot, 2014).

3 Lagrangian markers

Elemental properties (density, viscosity, thermal conductivity, specific heat and thermal expansion) needed to solve

Eqs. 5, 2 and 3 are related to the composition of each element, determined by means of Lagrangian markers that

are characteristic of different materials in the domain. Elemental properties (with the sole exception of the viscosity)

are calculated using an arithmetic mean, as

Pe =
1

n

n∑
i=1

Pi (7)

where Pe is the elemental property, Pi is the property characteristic of the material of each marker and n is the

number of markers of the element. Differently, the average scheme for the elemental viscosity can be chosen between

harmonic, geometric and arithmetic mean. Markers can be placed regularly or randomly at the beginning of the

simulation and their advection is performed by either a 2nd-order or a 4th-order Runge-Kutta in space, interpolating

1http://mumps.enseeiht.fr/
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5 STICKY AIR AND FREE SURFACE

the velocity field on each marker by means of the shape functions (see Section 12.3). The interpolated velocity is then

corrected by means of the Conservative Velocity Interpolation (CVI), which introduces a corrective term to reduce

dispersion and clustering of particles in both steady state and time-dependent (Wang et al., 2015) (see Section 12.4).

The initial distribution of the markers is created using the open-source code library Geodynamic World Builder (Fraters

et al., 2019). During the simulation, each marker carries memory of temperature, pressure and accumulated strain,

which are determined interpolating the relative nodal parameter. In particular, pressure is interpolated onto each

marker after the smoothing procedure. The number of markers contained in each element is maintained between

nmin and nmax . When in an element there are less markers than nmin the code adds random markers to reach the

nmin, while if the number is higher than nmax some of them are randomly deleted. When new markers are added,

they assume the properties of the nearest marker. In this way elements are never empty and maintain a number of

markers inside a prefixed range.

4 The momentum equation

The penalty method is implemented so that Eq. 5 can be written as:

∇ · u+
p

λ
= 0 (8)

where λ is the so-called penalty parameter, which should be 6-7 orders of magnitude larger than the shear viscosity

to ensure that mass conservation is satisfied (Donea and Huerta, 2003; Thieulot, 2014).

The deviatoric stress tensor in Eq. 2 can be written in terms of the strain rate tensor as τ = 2ηϵ̇, with ϵ̇ =
1
2

(
∇v + (∇v)T

)
. Therefore, Eq. 2 can be rewritten as:

−∇p +∇ ·
(
η
(
∇v + (∇v)T

))
+ ρg = 0 (9)

Finally, using pressure from Eq. 8, Eq. 9 can be rewritten as:

λ∇ (∇ · v) +∇ ·
(
η
(
∇v + (∇v)T

))
+ ρg = 0 (10)

The penalty method is been associated to the iterative Uzawa method, as described in detail in Dabrowski et al.

(2008) and Thieulot (2014) (see Section 12.5). Results of benchmarks performed to verify the correctness in the

implementation of Eq. 10 are shown in Sections 12.6 and 12.7.

To support large viscosities variations the penalty parameter is related to the effective elemental viscosity by means of

a dimensionless coefficient, so that λ = λe(e)ηeff (e) (Marotta et al., 2006; Dabrowski et al., 2008; Thieulot, 2014).

Benchmark of the falling block (Gerya and Yuen, 2003; Gerya, 2010; Thieulot, 2011) is performed to verify that the

code can correctly deal buoyancy driven flows with strong viscosity contrasts (Section 12.8).

5 Sticky air and free surface

The Earth’s surface can be treated by means of either the so-called sticky-air or a true free surface method, both

of them implemented in the code. In the sticky-air method the surface is approximated with the introduction of

a buoyant layer with a viscosity at least four orders of magnitude lower than the crust (Schmeling et al., 2008;

Crameri et al., 2012) and the interface between lithosphere and air is defined using a chain of passive markers that

are advected as the Lagrangian markers. The correctness of the evolution of the markers chain is tested with the

experiment of a 2D time-dependent Stokes sphere below a free surface and compared with results from ASPECT2

(Kronbichler et al., 2012; Heister et al., 2017; Bangerth et al., 2020a,b) (Section 12.9). In the true free surface case

the top boundary is assumed stress-free and velocities are not fixed. In this case topography variations are described

by vertical deformations of the mesh that depend on the velocity field of the nodes that identify the free surface, while

horizontal deformations are not taken into account. This procedure is known as the Arbitrary Lagrangian-Eulerian

(ALE) method and its implementation follows the technique described in Thieulot (2011). However, although the

implementation of a true free surface better reproduces laboratory experiment, extremely small time steps can be

necessary to maintain stability (Kaus et al., 2010; Quinquis et al., 2011; Thieulot, 2014). Therefore, the stability

algorithm proposed by Kaus et al. (2010) is implemented to avoid instabilities due to high density differences at the

free surface when using too large time steps. The implementation of this algorithm are tested by performing the

experiment described by Kaus et al. (2010) (Section 12.10).

2https://aspect.geodynamics.org/
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7 NON-LINEAR RHEOLOGIES

The topography relaxation benchmark proposed by Crameri et al. (2012) is performed to verify that the code correctly

recovers topography variations in case of both the sticky-air and the true free surface method (Section 12.11). Finally,

Section 12.12 show the results of the spontaneous subduction experiment described by Schmeling et al. (2008).

6 Erosion and sedimentation

Surface processes at either the lithosphere-air interface or in correspondence of the free surface have been implemented

by means of the software Fastscape3 (Braun and Willett, 2013; Cordonnier et al., 2019; Yuan et al., 2019b,a).

FastScapeLib is a set of routines that solve the stream power law (enriched by a sediment transport/deposition

term) (Yuan et al., 2019b), hillslope diffusion and marine transport and deposition (Yuan et al., 2019a). The partial

differential equation solved by FastScapeLib is:

∂h

∂t
= U − Kf A

meSne +
G

A

∫
A

(
U − ∂h

∂t

)
dA+ Kd∇2h (11)

where h is the topography, U is the uplift, Kf is the erodibility coefficient, A is the upstream drainage area, S is the

slope, me and ne are parameters that should be chosen to constrain the ratio me/ne between 0.35 and 0.8 (Croissant

and Braun, 2014; Ueda et al., 2015; Beucher and Huismans, 2020), G is the dimensionless deposition/transport

coefficient for the enriched stream power law and Kd is the effective diffusivity. Terms Kf A
meSne and Kd∇2h

consider long-range processes, described by a stream power law equation (Whipple and Tucker, 1999; Ueda et al.,

2015; Beucher and Huismans, 2020), and short-range processes, proportional to slope (Burov and Cloetingh, 1997;

Ueda et al., 2015; Beucher and Huismans, 2020).

In case of sticky air, slope is determined by means of the markers chain, which is vertically corrected considering

erosion and sedimentation rates. After the correction, continental markers above the markers chain are transformed

in air markers and air markers below the markers chain become sediments. Similarly, slope is determined considering

the nodes on the top boundary in case of true free surface and they are vertically corrected as for the markers chain.

In this case, continental markers above the top boundary are simply deleted.

7 Non-linear rheologies

Non-linear rheologies are implemented combining viscous creep (dislocation and diffusion) and plastic yielding. For

each marker, diffusion and dislocation viscosity (ηdf |ds) can be determined as follows (Karato and Wu, 1993; Warren

et al., 2008b; Wang et al., 2016):

ηdf |ds = fs

(
dm

A

) 1
n

(
2

1−n
n

3
n+1
2n

)
I

(1−n)
n

2 exp

(
Q + pV

nRT

)
(12)

where fs is a scaling factor used to represent lithologies that are stronger or weaker than the base set, d is the

grain size, m is the grain size exponent, n is the stress exponent, A is the uniaxial pre-exponential factor, I2 is the

square root of the second invariant of the strain rate tensor, Q is the activation energy, p is the pressure, V is the

activation volume, R is the gas constant and T is the temperature. Pressures and temperatures are determined by

the interpolation of the nodal parameters, while strain rates are calculated by means of the derivative of the velocities

on the nodes. In case of diffusion creep n = 1 and m > 0, in case of dislocation creep n > 1 and m = 0. The viscous

creep ηcp is then calculated as the harmonic average between ηdf and ηds :

ηcp =

(
1

ηdf
+

1

ηds

)−1

(13)

The implementation of the non-linear viscous creep viscosity depending on the strain rate is tested by means of the

slab detachment benchmark (Section 12.13).

Plastic yielding is implemented rescaling ηcp in order to limit the stress below the yield stress σy (Thieulot et al.,

2008; Thieulot, 2014; Glerum et al., 2018), obtaining

ηpl =
σy

2I2
(14)

where ηpl is the plastic viscosity and the yield stress is determined following the Drucker-Prager criterion, such as

σy = C cos(ϕ) + p sin(ϕ) (15)

3https://fastscape.org/
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8 HEALING AND WEAKENING

where C is the cohesion and ϕ is the internal friction angle. In case of negative pressure it is imposed equal to

0, so that negative yield stress are excluded. The correctness of the non-linear solution in case of plastic viscosity

with variable internal friction angle is verified performing indenter and brick experiments (Sections 12.14 and 12.15,

respectively).

Plastic yielding and viscous creep are then combined to obtain a viscoplastic viscosity ηvp as follows, assuming that

they are independent processes (Karato, 2008; Glerum et al., 2018):

ηvp = min(ηcp, ηpl) (16)

Finally, effective viscosity ηeff is capped by the minimum and the maximum viscosity (ηmin and ηmax , respectively)

to avoid extremely low or high viscosity (Glerum et al., 2018) as follows

ηeff = min(max(ηvp, ηmin), ηmax) (17)

Viscous creep and plastic yielding are non-linear rheologies because of their dependence on the velocity field through

pressure and strain rates. Therefore, the solution is determined by means of Picard-type iterations, until convergence

of the velocity field (Glerum et al., 2018). The convergence is verified at each iteration i via the nonlinear residual

Ri that can be determined as

Ri = K(ηeff (ϵ̇
i−1, pi−1)) · vi−1 − f i (18)

where K is the Stiffness matrix and f is the right hand side vector (Spiegelman et al., 2016; Glerum et al., 2018).

The L2-norm is extracted from Ri and it is normalised as follows

||Ri ||2
||R0||2

(19)

where ||R0||2 is the L2-norm of the first nonlinear iteration. Since often the normalised nonlinear residual drop very

quickly over the first 2-3 iterations, also the L2-norm of velocity and pressure residuals are calculated as

||∆v||2
||v||2

=
||vi − vi−1||2

||vi ||2
(20)

and

||∆p||2
||p||2

=
||pi − pi−1||2

||pi ||2
(21)

respectively. Iterations are performed until either maximal number of non-linear iterations (itmax) is reached or all

the normalised nonlinear residual, the velocity residual and the pressure residual converge under a defined tolerance

tol .

8 Healing and weakening

The temporal evolution of the accumulated strain ϵ has been implemented as in Fuchs and Becker (2019, 2021), as

following

dϵ

dt
= I2 − ϵHrate(T ) (22)

where the first term on the right-hand side is a source term given by the second invariant of the strain rate I2 and

the second term a temperature-dependent healing factor Hrate , calculated as

Hrate(T ) = B exp

[
−µ

2

(
1

T + 1
− 1

2

)]
(23)

where B is a constant describing the time scale of healing, while µ and T are the non-dimensional temperature

activation and temperature, respectively (Fuchs and Becker, 2019, 2021).

Strain softening is taken into account for both viscous creep and plastic viscosity (Huismans and Beaumont, 2003;

Babeyko and Sobolev, 2005; Huismans et al., 2005; Sobolev and Babeyko, 2005; Warren et al., 2008a) by means of

the accumulated strain ϵ memorised by each marker. Softening in the viscous creep determines a linear decrease of

ηvc by means of a viscous strain softening factor WS that increases linearly from WS0 to WS∞ for ϵS0 < ϵS < ϵS∞

(Warren et al., 2008a). This viscous softening can be related to strain-induced grain size reduction (Warren et al.,
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10 PHASE TRANSITIONS AND HYDRATION

2008a). Differently, plastic softening is simulated with a linear decrease of internal friction angle ϕ(ϵ) and cohesion

C (ϵ) in according to

ϕ(ϵ) = ϕ0 + (ϕ∞ − ϕ0)
ϵ− ϵ0
ϵ∞ − ϵ0

(24)

C (ϵ) = C0 + (C∞ − C0)
ϵ− ϵ0
ϵ∞ − ϵ0

(25)

where ϕ0, C0 and ϕ∞, C∞ are internal friction angle and cohesion for ϵ0 and ϵ∞, respectively (Huismans and

Beaumont, 2003; Huismans et al., 2005; Warren et al., 2008a; Thieulot, 2014). Plastic softening approximates

deformation-induced softening of faults and brittle shear zones (Warren et al., 2008a).

9 The energy equation

The stabilisation of the advection term of the energy equation (Eq. 3) needed to avoid possible oscillations in the

thermal solution in the case when advection dominates over diffusion, is implemented by means of a streamline-

upwind Petrov–Galerkin (SUPG) method, for which the advection term is modified follows the discussion in Thieulot

(2011) and Thieulot (2014) (see Section 12.16 for benchmark). The total internal heat production Htot in Eq. 3

includes radiogenic heating Hr , shear heating Hs and adiabatic heating Ha, where

Hs = 2ηϵ̇ : ϵ̇ = 2η(ϵ̇2xx + ϵ̇2yy + 2ϵ̇2xy ) (26)

and

Ha = Tα
Dp

Dt
≈ −αTρgyv (27)

The correctness of the implementation and the computation of shear and adiabatic heating is verified performing an

exercise with an analytical solution (Section 12.17) and Exercise 9.4 in Gerya (2010) (Section 12.18). Furthermore,

mantle convection and thin layer entrainment benchmarks (Sections 12.19 and 12.21, respectively) are performed to

verify that the code solve correctly Eqs. 10 and 3 in case of a temperature field characterised by an initial perturbation

and with a temperature-dependent density. At last, the viscoplastic mantle convection benchmark is performed to

check also the viscoplasticity in case of a initial perturbed temperature field (Section 12.20).

10 Phase transitions and hydration

Variations of effective density, specific heat and coefficient of thermal expansion during the evolution of crustal

and mantle materials at different pressure-temperature (p-T ) conditions are computed by means of version 6.8.6

of Perple X software package (Connolly, 2005), similarly to the implementation described in Marotta et al. (2020).

By default, mineral assemblages and properties of each lithology (oceanic crust, lower and upper continental crust,

sediments and dry or hydrated mantle) are calculated for temperatures from 330K to 1600K, with increments of

approximately 4K, and pressures from 0.1GPa to 30GPa, with increments of approximately 0.03GPa, for a total of

almost 100000 points.

The introduction of phase transitions produces two main effects that must be taken into account in numerical models:

variations in density and release/absorption of latent heat that is required by the extended Boussinesq approximation

(Ismail-Zadeh and Tackley, 2010). Effects of density variations on buoyancy force in the momentum equation (Eq.

10) are taken into account considering effective coefficient of thermal expansion (Christensen and Yuen, 1985; Zhong

et al., 2015). Similarly, effects of latent heat in the energy equation (eq 3) are taken into account by considering

effective specific heat and coefficient of thermal expansion (Christensen and Yuen, 1985; Ismail-Zadeh and Tackley,

2010; Zhong et al., 2015). Effective density, specific heat and coefficient of thermal expansion are included in Perple X

files and are assumed by each Lagrangian marker in according to its p-T conditions.

Hydration processes related to dehydration of subducting lithosphere (Schmidt and Poli, 1998; Liu et al., 2007;

Faccenda et al., 2009; Faccenda and Mancktelow, 2010; Faccenda, 2014; Rosas et al., 2016) strongly influence the

thermo-mechanics inside the mantle wedge, mainly because of both weakening effects on the mantle rheology and

density variations in case of mantle serpentinization (Gerya and Stockhert, 2002; Honda and Saito, 2003; Arcay et al.,

2005; Roda et al., 2010; Regorda et al., 2017). In the case that hydration is switched on, the amount of bound

and free water is memorised by each marker, following the implementation of Quinquis and Buiter (2014); hydration

and dehydration processes are related to the amount of bound water of each marker and to the maximum amount
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11 MANTLE MELTING

of water it can transport, i.e. if the amount of bound water exceeds the maximum amount of water, the marker

dehydrates and releases free water that can hydrates under-saturated markers. Maximum water content of each

marker is determined as function of lithology and p-T conditions and it is calculated using Perple X, in the same way

than effective density, specific heat and coefficient of thermal expansion. Bound water is advected together with the

markers, neglecting the effect of bound water diffusion, while free water simply migrates vertically and is not coupled

to the solid-phase flow of the mantle wedge (Arcay et al., 2005; Quinquis and Buiter, 2014). The correctness of

the migration scheme of the free water and its absorption into bound water by under-saturated markers are verified

performing the experiment described in Quinquis and Buiter (2014) (Sec. 12.22).

The mantle viscosity weakening related to the amount of water has been extensively studied (Chopra and Paterson,

1981; Hirth and Kohlstedt, 2003) and it is implemented in according to Arcay et al. (2005) and Horiuchi and Iwamori

(2016), as follows

ηwet = ηdry

([
1− 1

fv

]
exp

(
− [OH−]

[OH−]0

)
+

1

fv

)
(28)

where fv is the viscosity reduction factor between dry and wet conditions, [OH−] is the water content and [OH−]0 is

a reference water content set to 620 ppm (0.062 wt.%) (Arcay et al., 2005). By default, fv is set to 100, in according

to Arcay et al. (2005) and Horiuchi and Iwamori (2016).

11 Mantle melting

Melt fraction in the mantle depends on temperature (T , in °C), pressure (p, in GPa) and the water content in the

melt (XH2O , in wt.%). The determination of the melt fraction M is implemented as explained by Katz et al. (2003),

according to the successive modification by Langmuir et al. (2006) and Kelley et al. (2010), as follows

M(p,T ,XH2O) = −T + Tsol + (xt · ln(p + yt)) · XH2O −

+Km

(
X bulk
H2O

DH2O(1− XH2O) + XH2O

)γ

(29)

where Tsol is the temperature of the dry solidus, DH2O is the partition coefficient and xt · log(p + yt) indicates the

pressure dependence of the melting curve (Kelley et al., 2010). xt , yt , Km and γ are parameters chosen in according

to Kelley et al. (2010). However, XH2O depends on the melt fraction as

XH2O(M) =
X bulk
H2O

DH2O +M(1− DH2O)
(30)

and a numerical solution can be found using a root-finder method (Katz et al., 2003; Wang et al., 2016). Furthermore,

the content of water in the melt is limited by the pressure-dependent saturation concentration of water in the melt,

determined as

X sat
H2O = χ1p

λm + χ2p (31)

where χ1, χ2 and λm are parameters chosen according to Katz et al. (2003), Langmuir et al. (2006) and Kelley et al.

(2010). The correctness in the determination of melt fractions and water contents in the melt are tested comparing

model results with experimental curves obtained by Katz et al. (2003) (Sec. 12.23).

In case of melting, viscous creep viscosity (ηvp) is modified according to Wang et al. (2016), as

ηmelt = ηvp · exp(αmM) (32)

where αm are melt fraction factors for dislocation and diffusion creep, chosen in according to Wang et al. (2016).

Effective density (ρeff ) for partially molten rocks is calculated as

ρeff = ρs(1−M) + ρmM (33)

where ρs and ρm are the densities of the solid and the molten rock, respectively (Gerya et al., 2004; Gerya and Yuen,

2007; Wang et al., 2016). The density of the solid rock is extracted by Perple X, while the density of the molten

portion is calculated as

ρm(p,T ) = ρ0[1− α(T − T0)][1 + β(p − p0)] (34)
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12 BENCHMARKS

where ρ0 is the density at the reference temperature (T0) and pressure(p0), and α and β are the thermal expansion

and compressibility coefficients, respectively (Gerya et al., 2004; Gerya and Yuen, 2007; Wang et al., 2016).

As for the phase transitions, effects of density variations on buoyancy force in the momentum equation (Eq. 10)

are taken into account considering effective coefficient of thermal expansion. Similarly, latent heat due to melt-

ing/crystallisation can be implicitly included in the energy equation (Eq. 3) by considering effective specific heat

(Cpeff ) and thermal expansion (αeff ) of the partially molten rocks, in according to

Cpeff = Cp + HL

(
∂M

∂T

)
p

(35)

αeff = α+ ρ
HL

T

(
∂M

∂p

)
T

(36)

where Cp and α are the specific heat and the coefficient of thermal expansion of the solid rock, respectively, and HL

is the latent heat of the molten rock (Gerya et al., 2004; Gerya and Yuen, 2007; Ismail-Zadeh and Tackley, 2010).

12 Benchmarks

12.1 Error measurements

In order to determine the accuracy of velocity and pressure field of the benchmarks, the L2-norm is computed by

numerical integration on the Gauss-Legendre quadrature points. L2-norm for pressure and velocity errors can be

evaluated as

errp =

√√√√ ne∑
i=1

nq∑
q=1

(|pni (rq)− pai (rq)|2)wq|Jq| (37)

errv =

√√√√ ne∑
i=1

nq∑
q=1

(|uni (rq)− uai (rq)|2 + |vn
i (rq)− v a

i (rq)|2)wq|Jq| (38)

respectively, where ne is the number of elements, nq is the number of quadrature points per element, pni (rq) and

pai (rq) are the numerical and analytical pressure, respectively, in each quadrature point q, wq and Jq are the weight

and the Jacobian at the quadrature point q, uni (rq), vn
i (rq), uai (rq) and v a

i (rq) are the numerical and analytical

velocities, respectively, in each quadrature point q.

Other quantities used as comparison with original benchmarks are the root-mean-square velocity over the whole

domain and over the surface

vrms =

√∫
Ω

|v|2dΩ (39)

v top
rms =

√∫ 1

0

u2
∣∣∣∣
y=1

dx (40)

respectively, top and bottom Nusselt numbers

Nutop/bottom = −
∫ 1

0

∂T

∂y

∣∣∣∣
y=1/y=0

dx (41)

the average rate of work done against gravity

⟨W ⟩ =
∫
Ω

TuydΩ (42)

the average rate of viscous dissipation

⟨Φ⟩ =
∫
Ω

τij ϵ̇ijdΩ (43)

and the percentage error between ⟨W ⟩ and ⟨Φ⟩ /Ra

δ =

∣∣∣⟨W ⟩ − ⟨Φ⟩
Ra

∣∣∣
max

(
⟨W ⟩ , ⟨Φ⟩

Ra

) × 100 (44)
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12.2 Stokes flow 12 BENCHMARKS

12.2 Stokes flow

The problem consists of determining velocity field (u, v) and pressure p in case of a manufactured solution with

prescribed body forces such as

b1 = (12− 24y)x4 + (−24 + 48y)x3 + (−48y + 72y2 − 48y3 + 12)x2 +

+(−2 + 24y − 72y2 + 48y3)x + 1− 4y + 12y2 − 8y3

b2 = (8− 48y + 48y2)x3 + (−12 + 72y − 72y2)x2 + (4− 24y + 48y2 − 48y3 +

+24y4)x − 12y2 + 24y3 − 12y4

for which the exact solution is:

u(x , y) = x2(1− x)2(2y − 6y2 + 4y3)

v(x , y) = −y2(1− y)2(2x − 6x2 + 4x3)

p(x , y) = x(1− x)− 1

6

The domain is a unit square a constant viscosity (η = 1) and the penalty parameter is set to λ = 107. Velocity
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Figure 1: Velocity and pressure error for the Stokes flow experiment between generated and analytical solution as a

function of element size (panel a), and comparison between smoothed pressure and analytical solution as function of

x coordinate for a grid resolution of 128× 128 elements (panel b).

boundary conditions are set to no slip (v = 0) on all boundaries. The problem is performed for different grid resolution

between 8 × 8 and 1024 × 1024 elements. The errors between the analytical solution and the numerical prediction

of the pressure and the velocity field are calculated by means of Eqs. 37 and 38, respectively. Fig. 1a shows that

both velocity and pressure field converge to the exact solution with the decrease of the element size, following the

theoretical convergence rate. The convergence of pressure, in contrast with the observation by Donea and Huerta

(2003) for Q1 ×P0 elements, indicate the effectiveness of the smoothing procedure. Smoothed pressure field for grid
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Figure 2: Analysis, factorisation, solution and total solve times (panel a) and factorisation memory usage (panel b)

as a function of the total number of degrees of freedom for the Stokes flow experiment.

resolution of 128× 128 elements is shown in Fig. 1b (continuous red line), in comparison with the analytical solution

(dashed blue line). Solve times and memory usage needed to generate the solution are shown in Fig. 2. All data can

be found at https://github.com/aleregorda/Benchmarks/tree/main/Solver/Stokes_Flow.

9 / 33

https://github.com/aleregorda/Benchmarks/tree/main/Solver/Stokes_Flow


12.3 Markers advection 12 BENCHMARKS

12.3 Markers advection

The 2nd-order Runge-Kutta advection scheme in space is tested by means of the Zalesak disk test (Zalesak, 1979;

Thieulot, 2014). The benchmark is performed in a unit square domain with a grid resolution of 32 × 32 elements

and 1000000 markers and values of Courant number between 0.25 and 1.
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Figure 3: Distance from the centre as function of time for values of Courant

number of of 0.25, 0.3, 0.5, 0.75 and 1 (green, orange, blue, black and red,

respectively).

At t = 0, the disk is centred at position

(0.5; 0.75) with a radius R = 0.15 and

has a vertical fissure 0.05 wide and 0.2

high.The velocity field is prescribed in

the entire domain as

u(x , y) = 2π

(
y − Lx

2

)
v(x , y) = −2π

(
x − Lx

2

)
the markers are back to their ini-

tial location after a 2π rotation

(t = 1). The distance from

the centre of 1 marker is cal-

culated throughout the rotation to

evaluate the error for different val-

ues of Courant number. As ex-

pected, the error increase with the

increasing of the time step, as

shown in Fig. 3. All data can

be found at https://github.com/

aleregorda/Benchmarks/tree/main/

Advection/Zalesak_Disk.

12.4 Conservative Velocity Interpolation (CVI)

The CVI correction is checked by means of the Stokes flow experiment by Donea and Huerta (2003), as presented in

12.2. The advection of Lagrangian markers is performed using either a 2nd-order or a 4th-order Runge-Kutta scheme

with CFL=0.5 and an initial random distribution of 25 markers per element. Fig. 4 shows the minimum and maximum

values of markers per element throughout the experiment with and without the CVI correction and using different

Runge-Kutta schemes. The introduction of the CVI correction allows the tests to run for times longer than t = 2000

without show empty elements, while tests without the CVI correction stop at approximately t = 600, when at least one

element goes empty. Fig. 5 shows the different number of markers per element and the markers distribution at t = 600

obtained without and with the CVI correction (panels b and c, respectively) in case of a 2nd-order Runge-Kutta

scheme. All data can be found at https://github.com/aleregorda/Benchmarks/tree/main/Advection/CVI.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0  100  200  300  400  500  600  700  800  900  1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

n
° 

o
f 

m
a
rk

e
rs

Time

no CVI-RK=4

CVI-RK=4

no CVI-RK=2

CVI-RK=2

Number of Markers

 0

 0.5

 1

 1.5

 2

 2.5

 0  100  200  300  400  500  600  700  800  900  1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

n
(t

)/
n

0

Time

no CVI-RK=4

CVI-RK=4

no CVI-RK=2

CVI-RK=2

Standard Deviation

Figure 4: Maximum and minimum number of markers per element throughout the experiment, with (green and

orange lines) or without (purple and blue lines) the CVI correction and using either a 2nd-order (blue and orange

lines) or a 4th-order (purple and green lines) Runge-Kutta scheme.
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Figure 5: Number of markers per element and markers distribution through time using 2nd-order Runge-Kutta

scheme. Panels a: number of markers per element (panel a1) and distribution of the markers (panel a2) after the

first iteration; panels b and c: comparison between number of markers per element (panels b1 and c1) and markers

distribution (panels b2 and c2) without and with the CVI correction at t = 600; panels d: number of markers per

element (panel d1) and markers distribution (panel d2) in case of CVI correction at t = 2000.

12.5 Poiseuille flow

The domain is a rectangle with Lx = 2 and Ly = 1 and constant density and viscosity (ρ = 1 and η =

1), gravity acceleration g = 0 and penalty parameter λ = 108. The grid is composed by 40 × 20 elements.
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Figure 6: Velocity field (panel a), pressure (panel b) and divergence velocity of

a Poiseuille flow in case of the classic penalty method (no iterations) and after

one Uzawa iteration (panel c and d, respectively).

Velocity boundary conditions are

set to no slip (v = 0) at the top

and the bottom, and a parabolic

profile is imposed on the sides, with

u = y(1− y) and v = 0. The ana-

lytical solution is then given by:

u(x , y) = y(1− y)

v(x , y , ) = 0

p(x , y) = 2η

(
Lx
2

− x

)
The velocity field predicted by

the model follows the expected

parabolic profile (Fig. 6a and Fig.

7a) and, in case of the classic

penalty method with no iterations,

the pressure is clearly related to the

divergence by means of the penalty

parameter (Fig. 6b and c and Fig.

7b). Fig. 6d shows that one Uzawa

iteration is sufficient to bring the di-

vergence down to 1×10−15, with no

correlation with the pressure field.

All data can be found at https:

//github.com/aleregorda/Benchmarks/tree/main/Momentum_equation/Poiseuille%20Flow.
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Figure 7: Velocity (panel a) and pressure (panel b) field predicted by the model for a Poiseuille flow with respect

with their analytical solutions. The velocity field is plotted as function of the vertical coordinate in Lx/2 and the

pressure is plotted as function of the x coordinate in Ly/2.

12.6 Instantaneous 2D sphere

The domain is a unit square with gravity g = (0,−1). The fluid has constant density and viscosity (ρf = 1 and

ηf = 1). The sphere is in the middle of the domain with a radius R = 0.123456798 and has constant density and

viscosity (ρs = 10−2 + ρf and ηs = 103 · ηf ).
We distinguish three different types of velocity boundary conditions:

1. FS: free slip conditions on all sides.

2. NS: no slip conditions on all sides.

3. OT: free slip conditions on the sides and the bottom, and open boundary at the top.
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Figure 8: vrms as function of element size for the instantaneous 2D sphere exper-

iment in case of no slip boundary conditions and with different average schemes

for the viscosity. Results are compared with results obtained by other numerical

codes.

All three cases are performed

for different grid resolutions, be-

tween 16 × 16 and 512 × 512

elements with 50 randomly dis-

tributed markers per element,

and different average schemes

for the viscosity (harmonic, geo-

metric and arithmetic). The ve-

locity in the centre of the sphere

v(0.5; 0.5), minimum and max-

imum velocities (umin, umax ,

vmin, vmax) and pressures (pmin,

pmax), average pressure (pavg )

and root-mean-square velocity

vrms (as in Eq. 39) on the en-

tire domain are compared with

solutions generated by ASPECT

(Kronbichler et al., 2012; Heis-

ter et al., 2017; Bangerth et al.,

2020a,b). Results in terms of

the vrms for NS model are also

shown in Fig. 8. All results can

be found at https://github.com/cedrict/fieldstone/tree/master/images/stokes_sphere2D and https:

//github.com/aleregorda/Benchmarks/tree/main/Momentum_equation/Instantaneous_2D_Sphere.
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12.7 Rayleigh-Taylor instability

This problem has been originally presented by Van Keken et al. (1997) and here it is performed as the isoviscous case

(Case 1a). The domain has Lx = 0.9142 and Ly = 1 and gravity g = (0,−1).
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Figure 9: vrms of the Rayleigh-Taylor experiment as function of time for different

resolution of the grid.

Two fluids with same constant

viscosities (η1 = η2 = 1) and

different densities (ρ1 = 1000

and ρ2 = 1010), with the lighter

fluid at the bottom. The ini-

tial interface between the flu-

ids is given by y(x) = 0.2 +

0.02 cos
(

πx
Lx

)
. The experiment

is performed with different grid

sizes (50×50, 80×80, 100×100

and 256 × 256). A total of

1960000 markers are randomly

distributed at the beginning of

the simulation. Velocity bound-

ary conditions are set to no slip

at the top and the bottom, and

to free slip at the sides of the do-

main. Root-mean-square veloc-

ity vrms (as in Eq. 39) as func-

tion of time is reported in Fig.

9, matching well with results shown by Van Keken et al. (1997), Tackley and King (2003) and Thieulot (2014). Fig.

10 shows the evolution of the experiment at different time steps. All data can be found at https://github.com/

aleregorda/Benchmarks/tree/main/Momentum_equation/Rayleigh_Taylor_experiment/ISOVISCOUS.

a)

c) d)

b)

Figure 10: Evolution of the Rayleigh-Taylor experiment for a grid of 256×256 elements at t = 0, 500, 1000 and 2000

(panels a, b, c and d, respectively).
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12.8 Falling blocks
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Figure 11: Density evolution of the falling block ex-

periment at t = 0Myr (panel a) and t = 20Myr for

different viscosities of the block (panels b-f) and ρb =

3300 kgm−3.

This benchmark is described as proposed by Gerya

and Yuen (2003), Gerya (2010) and Thieulot (2011).

The domain is square with Lx = Ly = 500 km

and the grid is composed by 50 × 50 elements with

25 markers in each element. The block is initially

centred at (x = 250 km; y = 400 km) and has

a size of 100 × 100 km (Fig. 11a). The fluid

surrounding the block has ηf = 1 × 1021 Pa s and

ρf = 3200 kgm−3. The benchmark tests with dif-

ferent viscosities of the block, with ηb from 1 ×
1015 Pa s to 1 × 1027 Pa s. In each experiment also

the density ρb of the block varies from 3220 kgm−3

to 9900 kgm−3. Velocity boundary conditions are

set to free slip conditions on all sides of the do-

main. Density distributions at t = 20Myr for

ρb = 3300 kgm−3 and different ηb are plotted in

Fig. 11b-f, showing that the code correctly pre-

serve the block geometry in case of large viscos-

ity contrast, with a block stiffer than the surround-

ing fluid (Fig. 11f). The velocity in the centre of

the falling block at t = 0 is measured for all ex-

periments and, since the velocity should increase with

density contrast, the quantity v/(ρb − ρf ) is plot-

ted as function of the viscosity contrast. All re-

sults perfectly match with those from Gerya (2010)

and they line up on a single curve, demonstrat-

ing that the code can correctly deal with large vis-

cosity and density contrasts (Fig. 12). All data

can be found at https://github.com/aleregorda/

Benchmarks/tree/main/Momentum_equation/Falling%

20blocks.
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Figure 12: Initial velocity relative to the density contrast at the centre of the falling block as function of the viscosity

contrast between the block and the surrounding fluid.
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12.9 2D time-dependent Stokes sphere with deformable free surface

This experiment is performed in a unit square domain with the gravity acceleration fixed to gy = −1. The sphere has

ρs = 2 and ηs = 103 and is initially centred at (0.5; 0.6) with radius R = 0.123456789.
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Figure 13: vrms for different grid resolutions as function of time for the 2D time-

dependent Stokes sphere experiment in case of an arithmetic average. Results

are compared with results obtained by ASPECT.

The fluid surrounding the sphere

has ρf = 1 and ηf = 1 and occu-

pies the domain for y ≤ 0.75, while

for y > 0.75 the air has ρa = 0

and ηa = 10−3. Velocity boundary

conditions are set to free slip on all

sides. The Courant number is set to

0.25. The experiments run for 200

s using grid resolutions from 150×
150 to 512× 512 elements, with 25

randomly distributed markers per

element, and for different average

schemes for the viscosity. The in-

terface between the fluid and the air

is tracked by means of the markers

chain. Results in terms of velocity

and pressure fields and topography

variations are compared with re-

sults obtained with ASPECT (Kro-

nbichler et al., 2012; Heister et al.,

2017; Bangerth et al., 2020a,b)

and they can be found at https://github.com/cedrict/fieldstone/tree/master/images/stokes_sphere_

fs2D and https://github.com/aleregorda/Benchmarks/tree/main/Surface_processes/Time_dependent_

sphere. Results in terms of the root-mean-square velocity vrms (as in Eq. 39) in case of an arithmetic average are

also shown in Fig. 13.

12.10 Free surface stabilisation

The benchmark is performed as discussed in Kaus et al. (2010) and Thieulot (2014). The domain is square with

Lx = Ly = 500 km and a grid resolution of 200× 200 elements, each of them containing 16 markers.
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Figure 14: Evolution of the y coordinate in x = Lx as function of time for

different time steps, with and without the stabilisation algorithm.

A buoyant fluid with ρ1 = 3200 kgm−3

and η1 = 1× 1020 Pa s is overlain by a

denser fluid with ρ2 = 3300 kgm−3 and

η2 = 1×1021 Pa s. The initial interface

between the fluids has an initial sinu-

soidal shape of 5 km amplitude. Ve-

locity boundary conditions are set to

free slip conditions at the sides and no

slip at the bottom, while the top is free

surface. The experiment is performed

with various fixed time steps, without

the use of the Courant number. The

vertical position of the free surface at

x = Lx is tracked for each simula-

tion, with or without the stabilisation

algorithm. The results show an insta-

bility (drunken sailor effect) increasing

the time step in case that the stabili-

sation algorithm is not activated (dt =
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4200 yr, green line in Fig. 14), as already observed by Kaus et al. (2010) and Thieulot (2014). Activating the

algorithm the instability is fixed and the simulation remains stable using time step up to 50 000 yr (red line in Fig.

14). All data can be found at https://github.com/aleregorda/Benchmarks/tree/main/Surface_processes/

Stabilisation_algorithm.

12.11 Topography relaxation

This experiment is performed as in Crameri et al. (2012) using free surface and sticky air (Case 1). The domain

is rectangular with Lx = 2800 km and Ly = 700 km in case of free surface and Ly = 800 km in case of sticky

air (hst = 100 km). The grid is composed by 256 × 64 elements for the free surface 560 × 320 elements for the

sticky air. For both cases, there is a mantle of 600 km thickness with ηm = 1 × 1021 Pa s overlain by a highly

viscous cosine-shaped lithosphere with thickness between 93 and 107 km and ηl = 1 × 1023 Pa s. Both mediums

have ρ = 3300 kgm−3. In case of sticky air experiment, the air has ρa = 0kgm−3 and ηa = 1 × 1018 Pa s.

The gravity acceleration is set to gy = −10m s−2. Velocity boundary conditions are set to no slip at the bottom

and free slip at the sides of the domain. In case of sticky air, velocities on top are set to free slip conditions.
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Figure 15: Maximum topography as function of time for the Crameri benchmark

(coloured lines) in comparison with the analytical solution (black line) and results

shown by Crameri et al. (2012) with UNDERWORLD (yellow line) and SULEC

(blue line).

The maximum topography as

function of time (h(t)) can be

analytically derived in according

to

h(t) = h0 exp(γt)

where h0 = 7 km is the ini-

tial topography, γ = −0.2139×
10−11 is the characteristic re-

laxation rate and t is the time

(black line in Fig. 15). Max-

imum topography at the char-

acteristic relaxation time trlx =

14.825 kyr can be found to be

hrlx = 2576m. The results show

that a viscosity of the air of

1 × 1018 Pa s is needed in case

of hst = 100 km to correctly de-

scribe the topography relaxation

for this problem, as pointed out by Crameri et al. (2012) (purple line in Fig. 15). The case with a true free sur-

face well follows the analytical solution (orange line in Fig. 15). In particular, at the relaxation time in case of

the true free surface predicts a maximum topography of 2570m, with an error of 6m with respect to the ana-

lytical solution. Results are also compared with results obtained with a free surface in UNDERWORLD 256 × 64

elements) and SULEC (401 × 201 elements) (with courtesy from Crameri et al., 2012). All data can be found at

https://github.com/aleregorda/Benchmarks/tree/main/Surface_processes/Topography_relaxation.

12.12 Spontaneous subduction

This experiment is performed as presented by Schmeling et al. (2008), in case of both a sticky air and a true free

surface and using different average schemes for the viscosities. The domain is rectangular with Lx = 3000 km and

Ly = 700 km, a grid resolution of 256× 64 elements with 50 markers per element and Courant number of 0.01. At

the beginning of the simulation, a 100 km-thick lithospheric layer with ρm = 3300 kgm−3 and ηm = 1 × 1023 Pa s

is located at the top of the domain for x between 1000 and 3000 km, while the asthenospheric mantle has ρm =

3200Pa s and ηm = 1× 1021 Pa s. In addition, a 200 km-depth lithospheric slab is already subducted in the mantle

in order to have a spontaneous subduction. In case of sticky air, Ly = 750 km and a 50 km-thick air layer with ηa

from 1× 1019 Pa s to 1× 1021 Pa s overlie the mantle. Velocity boundary conditions are set to free slip on the sides

and on the bottom of the domain. In case of sticky air, velocities on the top boundary are set to free slip conditions

as well.
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Figure 16: Maximum depth of the slab as function of time for all the simulations

of the Schmeling et al. (2008) benchmark, in case of harmonic, geometric and

arithmetic means (red, green and blue lines, respectively) using a sticky air or

a true free surface (discontinuous and continuous lines, respectively). Red, green

and blue rectangular areas indicate the range of times from Schmeling et al. (2008)

when the slab tip reaches 500 km in case of sticky air, while the grey rectangular

area indicates the range of times from Schmeling et al. (2008) when the slab tip

reaches 600 km in case of true free surface.

The maximum depth of the slab

is tracked for all the simulations

(Fig. 16) and they are compared

with results obtained by Schmel-

ing et al. (2008) with models

with regular grids and compara-

ble grid resolutions (rectangles

in Fig. 16). Low viscous sticky

air models (i.e., 1 × 1019 Pa s)

enlighten a strong dependence

of the sinking velocity with the

chosen average scheme (dashed

lines in Fig. 16), while high

viscous sticky air models (i.e.,

1× 1021 Pa s) show a higher re-

sistance at the trench, under-

estimating the correct solution

(dotted lines in Fig. 16). A high

resistance at the trench can be

also observed in case of a true

free surface for the low resolu-

tion grid used (continuous lines

in Fig. 16), as pointed out by

Schmeling et al. (2008). All

data can be found at https:

//github.com/aleregorda/Benchmarks/tree/main/Surface_processes/Spontaneous_subduction.

12.13 The slab detachment

The slab detachment benchmark is performed as described by Schmalholz (2011) and Glerum et al. (2018). The

domain is rectangular with Lx = 1000 km and Ly = 660 km and a grid resolution of 256×256 elements. A non-linear

viscous T-shaped layer with ρl = 3300 kgm−3 is placed at the top of the domain and surrounded by a linear viscous

fluid with ρf = 3150 kgm−3. The top layer is 80 km-thick and a 250 km-long and 80 km-wide slab is placed at

x = Lx/2 (Fig. 17a).
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Figure 17: Effective viscosity for the slab detachment benchmark at the beginning of the evolution (panel a) and

when necking is complete (panel b).
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The effective viscosity of the top layer is given by

ηeff = η0I
(1−n)

n
2

with η0 = 4.75 × 1011 Pa s and n = 4, while the surrounding fluid has ηf = 1 × 1021 Pa s. The effective viscosity is

capped between ηmin = 1× 1021 Pa s and ηmax = 1× 1025 Pa s. Velocity boundary conditions are set to free slip at

the top and the bottom, and to no slip at the sides of the domain.
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Figure 18: Normalised width of the necking of the slab detachment bench-

mark as function of normalised time.

The sinking of the slab determines a

decrease of the effective viscosity in the

T-shaped layer during the first part of

the evolution (Fig. 17a), as conse-

quence of local strain rates, while ef-

fective viscosities increase up to ηmax

in the top layer after approximately

20Myr, when necking is complete (Fig.

17b). The width of necking is tracked

by means of markers position at the

side of the slab. Necking width and

time are normalised in function of the

initial slab (80 km) and the characteris-

tic time (tc = 7.1158×1014 s) (Schmal-

holz, 2011; Glerum et al., 2018). The

results in case of arithmetic, geomet-

ric and harmonic mean of the viscosity

are shown in Fig. 18, compared with

results from Glerum et al. (2018) for

which an infinity norm mean was used. The influence of the average schemes agrees with results shown in Section

12.12. All data can be found at https://github.com/aleregorda/Benchmarks/tree/main/Nonlinear_visco_

plasticity/Slab_detachment.

12.14 The indenter experiment

The indenter benchmark simulate a rigid punch on a purely plastic von Mises material, for which exists an analytical

solution (Thieulot et al., 2008; Thieulot, 2014; Glerum et al., 2018).
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Figure 19: Nodal pressure in function of the x coordinate at y = 1

for rough (green line) and smooth (blue line) punch experiment.

Black and red lines indicate the analytical solution at x = 0.5 and

x = 0.5± wp, respectively.

The domain is a unit square with a grid resolution

of 256×256 elements. The gravity acceleration is

set to g = 0 and effective viscosity is capped us-

ing ηmin = 10−4 and ηmax = 103. The tolerance

for the convergence of the non-linear solution is

tol = 10−9, with a maximum number of non-

linear iterations set to 500. The medium in the

domain has ρ = 0.01, an initial viscosity η0 = 10,

cohesion C = 1 and an angle of internal friction

ϕ = 0°. Velocity boundary conditions are set to

no slip at the bottom and free slip at the sides of

the domain. The top of the domain is open with

the exception of the central portion (punch area)

with width wp = 0.125, where v = −1.05 and u

is fixed either to 0 (rough punch experiment) or

free (smooth punch experiment).

The analytical solution indicate that pressure at

(0.5; 1) and (0.5±wp; 1)is p = π+1 and p = 1,

respectively (black and red lines in Fig. 19). Fig.
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19 shows a clear improvement in the pressure solution when passing from a rough to a smooth punch (green and

blue lines in Fig. 19, respectively), as previously observed by Thieulot (2014) and Glerum et al. (2018). Fig. 20 show

the results in terms of viscosity (panels a and b), strain rate (panels c and d), velocity (panels e and f) and pressure

(panels g and h) for both experiments. All data can be found at https://github.com/aleregorda/Benchmarks/

tree/main/Nonlinear_visco_plasticity/Indenter.
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Figure 20: Viscosity (panels a and b), strain rate (panels c and d), velocity (panels e and f) and pressure (panels g

and h) fields for rough (left column) and smooth (right column) punch experiments.

12.15 The brick experiment

An instantaneous version of the brick benchmark is performed to verify the correctness of the pressure-dependent

plasticity for different angle of internal friction, as proposed by Glerum et al. (2018). The domain is rectangular with

Lx = 40 km and Ly = 10 km and a grid resolution of 512 × 128 elements. The gravity acceleration is set to gy =

−10m s2 and effective viscosity is capped using ηmin = 1× 1019 Pa s and ηmax = 1× 1026 Pa s. The tolerance for the

convergence of the non-linear solution is tol = 10−7, with a maximum number of non-linear iterations set to 1000.

A 800 m-wide and 400 m-height inclusion with ηb = 1× 1020 Pa s and ρb = 2700 kgm−3 is placed at the bottom of

the domain at x = Lx/2. The inclusion is surrounded by a non-linear viscous medium with ρm = 2700 kgm−3, an

initial viscosity of 1 × 1023 Pa s, a linear viscous viscosity of 1 × 1025 Pa s and a cohesion of 40MPa. Velocities are

set to free slip conditions at the bottom of the domain and the top is open. Velocities on sides of the domain are

fixed to u = ±2× 10−11 ms−1 and v = 0. The experiment is performed in compressional and extensional contexts

with an angle of internal friction ϕ of the non-linear medium variable between 0° and 30°.
As expected, two shear bands stem from the inclusion with variable angles in relation to both the dynamics context

and the internal friction angle. Shear band angles formed at 45° for ϕ = 0° in both extensional and compressional

contexts (Fig. 21a), while they are different in case of ϕ ̸= 0°.
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Figure 21: Shear band angles predicted for the brick experiment for ϕ = 0° (panel a)
and for ϕ = 20° in case of compression and extension (panels b and c, respectively).

Shear band angles in case

of ϕ = 20° are shown for

compression and extension

in Fig. 21b and c, re-

spectively. Values of shear

band angles as function of

internal friction angles from

0° to 30° are extracted at

different depths and mini-

mum and maximum values

are plotted in Fig. 22,

in comparison with theo-

retical Roscoe, Arthur and

Coulomb shear band an-

gles. For all tests the tol-

erance for nonlinear con-

vergence is defined tol =

10−7 and none converges

before the maximum num-

ber of iterations (itmax =

1000) is reached. How-

ever, tests with internal

friction angles up to 15°
show a constant decrease of

the velocity residuals, which

can not be observed for

for tests with higher in-

ternal friction angles (Fig.

23). All data can be

found at https://github.

com/aleregorda/Benchmarks/tree/main/Nonlinear_visco_plasticity/Brick_experiment.
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Figure 22: Shear band angles predicted for the brick experiment in case of compressional and extensional contexts as

function of different internal angle of friction (continuous black line and red dots), compared with theoretical Roscoe,

Artur and Coulomb angles (discontinuous black lines). Red lines indicate the range of angles calculated at different

depths.
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Figure 23: Convergence rates for all tests. Normalised residuals (left column) are compared with velocity residuals

(right column) for extensional (first row) and compressional (second row) settings.

12.16 Advection stabilisation

The 1D advection problem proposed by Donea and Huerta (2003) and Thieulot (2011) is performed to verify the

effectiveness of the SUPG method to stabilise the advection term of the energy equation. The domain is a 1D segment

with Lx = 1 composed by 50 elements and a discontinuity in the thermal field placed at x = 0.25. Temperature is set

to 1 for x ≤ 0.25 and to 0 for x > 0.25. Velocity is set to u = 1 in the entire domain. The simulation is performed

for 250 time steps, with dt = 0.002, so the thermal discontinuity should be at x = 0.75 at the end of the simulation.

Temperature profiles at the end of the simulation are shown in Fig. 24 as function of the dimensionless coefficient

γ = τv/h. In case of the classic Galerkin method (γ = 0, blue line in Fig. 24) the final thermal profile is

characterised by strong oscillations, which are eliminated in case of the SUPG method (γ = 0.045, orange line in Fig.

24). All data can be found at https://github.com/aleregorda/Benchmarks/tree/main/Energy_equation/

Advection_stabilisation.
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Figure 24: Temperature profile as function of x for the advection stabilisation benchmark. Purple line indicates the

initial temperature profile; the green line indicates the analytical temperature profile after 250 time steps; blue line

indicates the temperature profile after 250 time steps in case of the classic Galerkin method (γ = 0); orange line

indicates the temperature profile after 250 time steps in case of the SUPG method (γ = 0.045).
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12.17 Shear heating

This exercise is performed in an unit square domain composed by 128×128 elements. The velocity field is prescribed

on the entire domain with v = (Ly − y)yex; viscosity, density and specific heat are fixed to 1, while thermal

conductivity and radiogenic energy are fixed to 0. Therefore, the energy equation (Eq. 3) can be simplified as

∂T

∂t
= Hs

and fixing T (t = 0) = 0, the temperature can be find as

T (t) = Hst

In this case we have

˙ϵxx =
∂u

∂x
= 0

˙ϵyy =
∂v

∂y
= 0

˙ϵxy =
1

2

(
∂v

∂x
+

∂u

∂y

)
=

1

2
(Ly − 2y)

and, simplifying Eq. 26, shear heating can be calculated as

Hs(x , y) = (1− 2y)2

The solution predicted by the model in terms of velocity, temperature and shear heating match well with the analyt-

ical solutions (Fig. 25). All data can be found at https://github.com/aleregorda/Benchmarks/tree/main/

Energy_equation/Simple_shear.
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Figure 25: Velocity (panel a), temperature (panel b) and shear heating (panel c) as function of the y coordinate

for the simple shear experiment. The solutions predicted by the model (red lines) are compared with the analytical

solutions (dashed blue lines).

12.18 Shear and adiabatic heating

This problem is performed as presented in Exercise 9.4 in Gerya (2010). Two materials are vertically separated in a

rectangular domain with Lx = 1000 km, Ly = 1500 km and a grid resolution of 30× 20 elements. Constant thermal

coefficient expansion (α = 3× 10−5 K−1), temperature (T = 1300K) and gravity acceleration (gy = −10m s2) are

assumed in the whole domain. Fluid 1 (on the left side of the domain) has ρ1 = 3200 kgm−3 and η1 = 1×1020 Pa s;

fluid 2 (on the right side of the domain) has ρ2 = 3300 kgm−3 and η2 = 1× 1022 Pa s. Velocity boundary conditions

are set to free slip on all sides of the domain.

As shown in Fig. 26, both shear and adiabatic heating predicted by the code (first row in Fig. 26) well recre-

ate the results obtained by means of example Shear adiabatic heating .m from Gerya (2010) (second row in Fig.

26). All data can be found at https://github.com/aleregorda/Benchmarks/tree/main/Energy_equation/

Adiabatic%2BShear.
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Figure 26: Comparison between shear (first column), adiabatic (second column) and total (third column) energy

predicted by the code (panels a, b and c) and those created using example Shear adiabatic heating .m from Exercise

9.4 in Gerya (2010) (panels d, e and f).

12.19 Mantle convection

This problem is performed as presented by Blankenbach et al. (1989) (constant viscosity cases) and Thieulot (2014),

in a 2D unit square domain with gravity acceleration gy = 1010Ra. The experiment is performed with three different

Rayleigh numbers (Ra = 104, 105 and 106) and with different grid resolution (between 32×32 and 128×128 elements).

The fluid has constant viscosity, initial density, heat capacity, thermal conductivity (η = ρ0 = Cp = k = 1), reference

temperature (T0 = 0) and thermal expansion coefficient (α = 10−10). Temperatures are set to 0 on top and 1 on

bottom of the domain. Velocity boundary conditions are set to free slip on all sides. The initial temperature field is

given by

T (x , y) = (1− y) + 0.01 cos(πx) sin(πy)

The solution generated by the code in terms of vrms (calculated as in Sec. 12.1) and Nu as function of time are

reported for all the simulations in Fig. 27. At the steady state, root-mean-square velocity vrms and Nusselt number

Nu (as in Eqs. 39 and 41, respectively) of all simulations well converge toward the values from Blankenbach et al.

(1989), with lower errors for higher resolution grids (Table 2). All data can be found at https://github.com/

aleregorda/Benchmarks/tree/main/Momentum%2BEnergy/Mantle_convection.

Blankenbach et al. (1989)
Thieulot (2014) FALCON

200× 200 32× 32 64× 64 128× 128

Ra = 104
vrms 42.864947± 0.000020 42.867 42.83226 42.852793 42.861394

Nu 4.884409± 0.000010 4.882 4.781297 4.857475 4.877573

Ra = 105
vrms 193.21454± 0.00010 193.255 193.872643 193.377472 193.252290

Nu 10.534095± 0.000010 10.507 9.602514 10.270735 10.465629

Ra = 106
vrms 833.98977± 0.00020 834.712 848.091176 837.767911 834.945793

Nu 21.972465± 0.000020 21.695 15.999266 19.703682 21.306939

Table 2: Comparison between vrms and Nu predicted by the code for the mantle convection experiment and same

values as reported in literature.
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Figure 27: vrms (panels a, c and e) and Nu (panels b, d and f) for the mantle convection benchmark as function of

time for different grid resolution. Panels a and b show the results for Ra = 104; Panels c and d show the results for

Ra = 105; panels e and f show the results for Ra = 106. Purple lines indicate the convergence values for the vrms

and the Nu from Blankenbach et al. (1989) at the steady state.

12.20 Viscoplastic mantle convection

This benchmark is performed as Cases 1-5a described in Tosi et al. (2015) in a 2D unit square domain with two

different grid resolutions of 32 × 32 and 100 × 100 elements. Reference viscosity, reference density, heat capacity,

thermal conductivity and thermal expansion coefficient are fixed to a constant value of 1 (η0 = ρ0 = Cp = k = α = 1),

while the gravity has been chosen as gy = 102, in order to obtain a Rayleigh number Ra = 102. Temperatures are

set to 0 on top and 1 on bottom of the domain. Velocity boundary conditions are set to free slip on all sides. The

initial temperature field is given by

T (x , y) = (1− y) + 0.01 cos(πx) sin(πy)

The viscosity field η is calculated as the harmonic average between a linear part ηlin that depends on temperature

only or on temperature and depth y and a nonlinear-plastic part ηpl that depends on the strain rate ϵ̇, as follows

η(T , y , ϵ̇) = 2

(
1

ηlin(T , y)
+

1

ηpl(ϵ̇)

)−1

The linear and the nonlinear-plastic parts of the viscosity are calculated following Tosi et al. (2015) as follows

ηlin(T , y) = exp(− ln(∆ηT )T + ln(∆ηy )y)

ηpl(ϵ̇) = η∗ +
σY√
ϵ̇ : ϵ̇

where ∆ηT , ∆ηy , η
∗ and σY are parameters chosen as listed in Table 3.
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Case Ra ∆ηT ∆ηy η∗ σY Convective regime

1 102 105 1 - - Stagnant lid

2 102 105 1 10−3 1 Mobile lid

3 102 105 10 - - Stagnant lid

4 102 105 10 10−3 1 Mobile lid

5 102 105 10 10−3 4 Periodic

Table 3: Benchmark cases and corresponding parameters.

For each case, some diagnostic quantities measured at the steady state are reported in Table 4 (see Section 12.1 for

the computation of all the quantities), showing a well fit with results described in Tosi et al. (2015). Data and charts

for all cases can be found at https://github.com/aleregorda/Benchmarks/tree/main/Momentum%2BEnergy/

Viscoplastic_mantle_convection.

Case 1

Code Resolution ⟨T ⟩ Nutop Nubottom vrms v top
rms utopmax ηmin ηmax ⟨W ⟩ ⟨Φ⟩ /Ra δ

YACC 100× 100 0.7767 3.4298 3.3143 251.7997 1.8298 2.5516 - - 2.4583 2.4333 1.02%

ELEFANT 100× 100 0.7758 3.4214 3.313 249.134 1.8642 2.6119 - - 2.4316 2.4276 0.16%

Stone 28 32× 32 0.7737 3.3987 - 243.872 - - - - - - -

FALCON 100× 100 0.7759 3.4280 3.3168 249.901 1.8907 2.6340 - - 2.4299 2.4311 0.05%

Case 2

Code Resolution ⟨T ⟩ Nutop Nubottom vrms v top
rms utopmax ηmin ηmax ⟨W ⟩ ⟨Φ⟩ /Ra δ

YACC 100× 100 0.6058 8.5278 8.3990 142.2020 105.1767 122.3238 1.9853× 10−5 1.6095 7.6222 7.6194 0.04%

ELEFANT 100× 100 0.6034 8.5115 8.4465 140.8067 104.1228 121.766 2.0600× 10−5 1.85 7.5665 7.5585 0.11%

Stone 28 32× 32 0.6052 8.1715 - 141.518 - - - - - - -

FALCON 100× 100 0.6044 8.5266 8.4590 141.3684 104.8867 122.0470 2.0333× 10−5 1.2914 7.5707 7.5718 0.01%

Case 3

Code Resolution ⟨T ⟩ Nutop Nubottom vrms v top
rms utopmax ηmin ηmax ⟨W ⟩ ⟨Φ⟩ /Ra δ

YACC 100× 100 0.7286 3.0374 2.9628 100.9467 2.0374 2.8458 4.7907× 10−5 1 2.0400 2.0335 0.32%

ELEFANT 100× 100 0.7275 3.0347 2.9908 100.1208 2.0652 2.9019 4.8080× 10−5 0.9023 2.0384 2.037 0.07%

Stone 28 32× 32 0.7277 3.0347 - 100.018 - - - - - - -

FALCON 100× 100 0.7275 3.0368 3.0086 100.2776 2.0832 2.9086 4.8129× 10−5 0.9360 2.0387 2.0386 <0.01%

Case 4

Code Resolution ⟨T ⟩ Nutop Nubottom vrms v top
rms utopmax ηmin ηmax ⟨W ⟩ ⟨Φ⟩ /Ra δ

YACC 100× 100 0.5289 6.5572 6.5243 79.6202 75.4814 89.2940 1.9174× 10−4 1.6773 5.6512 5.6463 0.09%

ELEFANT 100× 100 0.5277 6.5912 6.5834 79.1105 74.7596 88.9146 1.9860× 10−4 1.5200 5.6216 5.6182 0.06%

Stone 28 32× 32 0.5286 6.4036 - 79.4746 - - - - - - -

FALCON 100× 100 0.5279 6.5897 6.5830 79.1220 75.0715 88.8484 1.9693× 10−4 1.4133 5.6127 5.6113 0.03%

Case 5

Code Resolution P ⟨T ⟩min ⟨T ⟩max Nutopmin Nutopmax vmin
rms vmax

rms (⟨Φ⟩ /Ra)min (⟨Φ⟩ /Ra)max

YACC 100× 100 0.0792 0.6543 0.6722 2.6950 7.2792 41.9813 98.8230 1.4347 9.2748

ELEFANT 100× 100 0.076 0.6514 0.6693 2.6808 7.3506 41.2578 100.089 1.3324 9.5289

Stone 28 32× 32 0.0764 0.6521 0.6697 2.6912 7.0763 41.61 98.183 - -

FALCON 100× 100 0.0775 0.6519 0.6697 2.6847 7.3629 41.5256 99.5466 1.3399 9.3993

Table 4: Results of the viscoplastic mantle convection benchmark for different grid resolutions in Cases 1-5 compared

with results obtained with ELEFANT and YACC (100×100 elements, from Tosi et al., 2015) and in Stone 28 (32×32

elements, from https://github.com/cedrict/fieldstone/tree/master/python_codes/fieldstone_28).
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12.21 Thin layer entrainment

This experiment is performed as originally proposed by Van Keken et al. (1997) with two incompressible fluids in a

rectangular domain with Lx = 2 and Ly = 1 and gravity acceleration gy = 1010Ra. The Rayleigh number and the

compositional Rayleigh number are fixed to Ra = 300000 and Rc = 450000, respectively. Both fluids have constant

viscosity, thermal conductivity, specific heat (η = ρ = Cp = 1) and thermal expansion coefficient (α = 10−10). Fluid

1 has a density ρ1 = 1, while fluid 2 is denser (ρ2 = ρ1 +1.5 · 10−10) and is placed at the bottom of the domain, for

y ≤ 0.025. Temperature are set to 0 on top and 1 on bottom of the domain. Velocity boundary conditions are set

to free slip on all sides of the domain. The initial temperature field is given by

T (x , y) = Tu(x , y) + Tl(x , y) + Tr (x , y) + Ts(x , y)−
3

2
with

Tu(x , y) =
1

2
erf

(
1− y

2

√
u0
x

)
Tl(x , y) = 1− 1

2
erf

(
y

2

√
u0

Lx − x

)
Tr (x , y) =

1

2
+

Q

2
√
π

√
u0

y + 1
exp

(
− x2u0
4y + 4

)
Ts(x , y) =

1

2
− Q

2
√
π

√
u0

2− y
exp

(
− (Lx − x)2u0

8− 4y

)
and

u0 =
L
7/3
x

(1 + L4x)
2/3

(
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π

) 2
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Figure 28: vrms for the thin layer experiment as function of time for different grid resolution. Results are compared

with results obtained by Van Keken et al. (1997) (black lines) and with ASPECT and ELEFANT.

The experiment is performed with two grid resolution (125 × 40 and 200 × 80 elements), with 100 markers per

element and CFL of 0.25. Root-mean-square velocity calculated as in Eq. 39 for both the simulations match well

with results from Van Keken et al. (1997) and obtained with ASPECT (Kronbichler et al., 2012; Heister et al.,

2017; Bangerth et al., 2020a,b) and ELEFANT (Thieulot, 2014), obtained with similar grid resolutions (Fig. 28).

In addition, a variety of simulations with different resolutions and aspect ratios are performed to verify that the

sensitivity of the initial velocity field. Results match well with results from Van Keken et al. (1997) (in the grey area)

and Thieulot (2014) (Fig. 29). All data can be found at https://github.com/aleregorda/Benchmarks/tree/

main/Momentum%2BEnergy/Thin_layer.

26 / 33

https://github.com/aleregorda/Benchmarks/tree/main/Momentum%2BEnergy/Thin_layer
https://github.com/aleregorda/Benchmarks/tree/main/Momentum%2BEnergy/Thin_layer


12.22 Sinking hydrated cylinder 12 BENCHMARKS

 377
 377.5

 378
 378.5

 379
 379.5

 380
 380.5

 381
 381.5

 382
 382.5

 383
 383.5

 384
 384.5

 385
 385.5

 386
 386.5

 0.001  0.002  0.005  0.01  0.02  0.05  0.1

800x800 200x200

80x80

125x40
v r

m
s (

t=
0)

element diameter

Regorda, 1:1
Regorda, 2:1

Regorda, multiple of 40
 multiple of 40

 aspect ratio 1:1
 aspect ratio 1:2

 aspect ratio 1:1, 4<n<500 
van Keken et al, 1997
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the elements. Results are compared with results obtained by Van Keken et al. (1997) (black dots in the grey area)

and with ASPECT and ELEFANT.

12.22 Sinking hydrated cylinder
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Figure 30: Distribution of bound and free water (left and right

columns, respectively) at t = 0.5 and t = 1.25Myr (first and sec-

ond rows, respectively) for the sinking hydrated cylinder experiment.

Only markers with bound or free water not equal to 0 are plotted.

This experiment is performed as explained in

Quinquis and Buiter (2014) and simulates the

sinking of a cold, hydrated cylinder into a

warm, dry mantle. The domain is square

with Lx = Ly = 300 km, a grid resolution

of 300 × 300 elements and 25 markers per

element. The sinking cylinder is located at

x = 150 km and y = 170 km with a ra-

dius of 20 km and has ρc = 3250 kgm−3,

ηc = 1 × 1023 Pa s, a thermal conductivity

kc = 4.5Wm−1 K−1,a specific heat Cpc =

1250 J kg−1 K−1; the surrounding mantle has

ρm = 3200 kgm−3, ηm = 1×1020 Pa s, a ther-

mal conductivity km = 105Wm−1 K−1 and

specific heat Cpm = 1250 J kg−1 K−1; a 58

km-thick lithosphere overlies the mantle and

has ρl = 3200 kgm−3, ηl = 1 × 1023 Pa s,

a thermal conductivity kl = 4.5Wm−1 K−1,

specific heat Cpl = 750 J kg−1 K−1 and a ther-

mal diffusivity of 1 × 10−6 m2 s−1. Velocity

boundary conditions are set to free slip on all

sides of the domain. Temperature increase

linearly in the lithosphere, from 0° to 1300°C,
and in the mantle, from 1300° to 1360.5°C.
The initial temperature of the cylinder is fixed

to 400°C. Throughout the evolution, temper-

ature is fixed to 0° and 1360.5°C at the top

and bottom of the domain, respectively. The

initial bound water content is imposed at 2

wt.% in the cylinder and at 0 wt.% in both
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the mantle and the lithosphere. The maximum amount of water in the mantle is fixed to 0.2 wt.%, while maximum

water content in the cylinder and in the lithosphere is function of pressure and temperature and is calculated using

a serpentinized harzburgite with Perple X, as in Quinquis and Buiter (2014).

As shown in Quinquis and Buiter (2014), the model is characterised by a progressive dehydration in the external

portion of the cylinder, due to the increase of temperature, with a consequent vertical migration of free water that

hydrates the mantle above the cylinder, up to the lithosphere. The distribution of bound and free water during the

evolution of the experiment is shown in Fig. 30 (left and right columns, respectively). All data can be found at

https://github.com/aleregorda/Benchmarks/tree/main/Hydration.

12.23 Mantle melting curves

This instantaneous experiment is performed in order to recreate isobaric melting curves, as function of temperature,

bulk water and content of water in the melt, to compare with melting curves obtained by Katz et al. (2003). The

domain is square with Lx = Ly = 100 km, a grid resolution of 100 × 100 elements and 25 markers per element.

Density is set in the entire domain to 3300 kgm−3 and temperature increases from the sides to the centre from 1000°
to 1500°C. The experiment is performed for bulk water contents from 0 to 0.3 wt.%.

Fig. 31 shows isobaric melting curves for 1 GPa (panel a) and 3GPa (panel b) calculated for different bulk water

contents. The curves well match with those obtained for the mantle by Katz et al. (2003), showing the saturation

at the solidus for bulk water of 0.2 and 0.3 wt.%, indicating that the code correctly determines melt fraction as

function of pressure, temperature and bulk water content. Same results can be observed in Fig. 32a, where isobaric

and isothermal melting curves are shown as function of bulk water content. In addition, Fig. 32b shows that the

code correctly determines also the percentage of water in the melt as function of pressure, temperature and melt

fraction. All data can be found at https://github.com/aleregorda/Benchmarks/tree/main/Melting.
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Figure 31: Isobaric melting curves for 1 GPa (panel a) and 3 GPa (panel b) as function of temperature with different

bulk water contents.
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C. H. Langmuir, A. Bézos, S. Escrig, and S. W. Parman. Chemical systematics and hydrous melting of the mantle

in back-arc basins. Geophysical Monograph Series, 166:87–146, 2006. doi:10.1029/166GM07.

L. Liu, J. Zhang, H. W. Green, Z. Jin, and K. N. Bozhilov. Evidence of former stishovite in metamorphosed

sediments, implying subduction to ¿350 km. Earth and Planetary Science Letters, 263(3-4):180–191, 2007.

doi:10.1016/j.epsl.2007.08.010.

A. M. Marotta, E. Spelta, and C. Rizzetto. Gravity signature of crustal subduction inferred from numerical modelling.

Geophysical Journal International, 166:923–938, 2006. doi:10.1111/j.1365-246X.2006.03058.x.

A. M. Marotta, F. Restelli, A. Bollino, A. Regorda, and R. Sabadini. The static and time-dependent signature of

ocean-continent and ocean-ocean subduction: The case studies of Sumatra and Mariana complexes. Geophysical

Journal International, 221(2):788–825, 2020. doi:10.1093/gji/ggaa029.

M. E. Quinquis and S. J. Buiter. Testing the effects of basic numerical implementations of water migration on models

of subduction dynamics. Solid Earth, 5(1):537–555, 2014. doi:10.5194/se-5-537-2014.

M. E. Quinquis, S. J. Buiter, and S. Ellis. The role of boundary conditions in numerical models of subduction zone

dynamics. Tectonophysics, 497(1-4):57–70, 2011. doi:10.1016/j.tecto.2010.11.001.

A. Regorda, M. Roda, A. M. Marotta, and M. I. Spalla. 2-D numerical study of hydrated wedge dynamics from subduc-

tion to post-collisional phases. Geophysical Journal International, 211(2):974–1000, 2017. doi:10.1093/gji/ggx336.

M. Roda, A. M. Marotta, and M. I. Spalla. Influence of the thermal state of the overriding plate on the slab dip.

Rend. online Soc. Geol. It., 10:96–99, 2010.

J. C. Rosas, C. A. Currie, R. N. Harris, and J. He. Effect of hydrothermal circulation on slab dehydration for the

subduction zone of Costa Rica and Nicaragua. Physics of the Earth and Planetary Interiors, 255:66–79, 2016.

doi:10.1016/j.pepi.2016.03.009.

S. M. Schmalholz. A simple analytical solution for slab detachment. Earth and Planetary Science Letters, 304(1-2):

45–54, 2011. doi:10.1016/j.epsl.2011.01.011.

31 / 33

https://doi.org/10.1029/2004JB003114
https://doi.org/10.1017/cbo9780511804892
https://doi.org/10.1126/science.260.5109.771
https://doi.org/10.1029/2002GC000433
https://doi.org/10.1016/j.pepi.2010.04.007
https://doi.org/10.1093/petrology/egq036
https://doi.org/10.1111/j.1365-246X.2012.05609.x
https://doi.org/10.1029/166GM07
https://doi.org/10.1016/j.epsl.2007.08.010
https://doi.org/10.1111/j.1365-246X.2006.03058.x
https://doi.org/10.1093/gji/ggaa029
https://doi.org/10.5194/se-5-537-2014
https://doi.org/10.1016/j.tecto.2010.11.001
https://doi.org/10.1093/gji/ggx336
https://doi.org/10.1016/j.pepi.2016.03.009
https://doi.org/10.1016/j.epsl.2011.01.011


REFERENCES REFERENCES

H. Schmeling, A. Babeyko, A. Enns, C. Faccenna, F. Funiciello, T. Gerya, G. Golabek, S. Grigull, B. Kaus, G. Morra,

S. Schmalholz, and J. van Hunen. A benchmark comparison of spontaneous subduction models—Towards a free

surface. Physics of the Earth and Planetary Interiors, 171(1-4):198–223, 2008. doi:10.1016/j.pepi.2008.06.028.

M. W. Schmidt and S. Poli. Experimentally based water budgets for dehydrating slabs and consequences for arc

magma generation. Earth and Planetary Science Letters, 163:361–379, 1998. doi:10.1016/S0012-821X(98)00142-

3.

S. V. Sobolev and A. Y. Babeyko. What drives orogeny in the Andes? Geology, 33(8):617–620, 2005.

doi:10.1130/G21557.1.

M. Spiegelman, D. A. May, C. R. Wilson, and R. C. Wilson. On the solvability of incompressible Stokes

with viscoplastic rheologies in geodynamics. Geochemistry, Geophysics, Geosystems, 17(6):2213–2238, 2016.

doi:10.1002/2015GC006228.

P. J. Tackley and S. D. King. Testing the tracer ratio method for modeling active compositional fields in mantle

convection simulations. Geochemistry, Geophysics, Geosystems, 4(4):1–15, 2003. doi:10.1029/2001GC000214.

C. Thieulot. FANTOM: Two- and three-dimensional numerical modelling of creeping flows for the solution of geolog-

ical problems. Physics of the Earth and Planetary Interiors, 188(1-2):47–68, 2011. doi:10.1016/j.pepi.2011.06.011.

C. Thieulot. ELEFANT: a user-friendly multipurpose geodynamics code. Solid Earth Discussions, 6(2):1949–2096,

2014. doi:10.5194/sed-6-1949-2014.

C. Thieulot, P. Fullsack, and J. Braun. Adaptive octree-based finite element analysis of two- and three-

dimensional indentation problems. Journal of Geophysical Research: Solid Earth, 113(12):1–21, 2008.

doi:10.1029/2008JB005591.
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